Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.347
Filtrar
1.
Immunity ; 57(4): 700-717, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599166

RESUMO

C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.


Assuntos
Lectinas Tipo C , Neoplasias , Humanos , Lectinas Tipo C/metabolismo , Imunidade Inata , Células Mieloides/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
2.
Methods Cell Biol ; 184: 119-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555152

RESUMO

Lysosomal acid lipase (LAL) is a key enzyme in the metabolic pathway of neutral lipids, whose deficiency (LAL-D) induces the differentiation of myeloid lineage cells into myeloid-derived suppressor cells (MDSCs), which promotes tumor growth and metastasis. This protocol provides detailed procedures for assessment of various LAL biochemical and physiological activities in Ly6G+ and CD11c+ MDSCs, including isolation of Ly6G+ and CD11c+ cells from the bone marrow and blood of mice, assays of LAL-D-induced cellular metabolic and mitochondrial activities, assessment of LAL-D-induced pathogenic immunosuppressive activity and tumor stimulatory activity. Pharmacological inhibition of the LAL activity was also described in both murine myeloid cells and human white blood cells.


Assuntos
Células Supressoras Mieloides , Neoplasias , Camundongos , Humanos , Animais , Esterol Esterase/metabolismo , Células Supressoras Mieloides/metabolismo , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/patologia , Neoplasias/metabolismo
3.
Methods Cell Biol ; 184: 59-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555158

RESUMO

Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of myeloid origin and immature state, whose hallmark is the capacity to suppress T cells and other immune populations. In mice, the first approach to identify MDSCs relies in the measurement of their phenotypical markers: CD11b and GR-1. In addition, two main subtypes of MDSCs have been defined based on the expression of the following markers: CD11b+ Ly6G- Ly6C+ (monocytic-MDSCs, M-MDSCs) and CD11b+ Ly6G+ Ly6C+/low (polymorphonuclear-MDSCs, PMN-MDSCs). Since CD11b+ GR-1+ (Ly6C+/Ly6G+) MDSCs can increase significantly in peripheral blood during numerous acute or chronic processes, measuring alterations in the phenotypic markers CD11b and GR-1 could be important as a first step before assessing the suppressive function of the cells. In many cases it could be necessary to measure CD11b+ Gr-1+ cells from a minimum volume of peripheral blood cells without greatly affecting animal viability, since this approach would allow for further studies to be conducted on subsequent days, such as measuring parameters of the immune response or even survival in the context of the pathology under study. The following protocol describes a simple and optimized protocol for measuring the presence of CD11b+ GR-1+ (Ly6C+/Ly6G+) myeloid cells using 2+ channel flow cytometry, from a minimum volume of mouse peripheral blood obtained by facial vein puncture.


Assuntos
Monócitos , Células Mieloides , Camundongos , Animais , Células Mieloides/metabolismo , Linfócitos T , Citometria de Fluxo , Camundongos Endogâmicos C57BL
4.
Methods Cell Biol ; 184: 85-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555160

RESUMO

Myeloid-derived suppressor cells (MDSCs) are major promoters of progression and metastasis in cancer. MDSCs inhibit the anti-tumor immune response through multiple mechanisms. The main MDSC functions in cancer are related to the inactivation of T cells and the establishment of an immunosuppressive tumor microenvironment (TME) through the production of pro-inflammatory cytokines, among other mechanisms. MDSCs are phenotypically similar to conventional myeloid cells, so their identification is challenging. Moreover, they infiltrate the tumors in limited numbers, and their purification from within the tumors is technically difficult and makes their study a challenge. Therefore, several ex vivo differentiation methods have been established. Our differentiation method leads to MDSCs that closely model tumor-infiltrating counterparts. In this protocol, MDSCs are differentiated from bone marrow precursors by incubation in differentiation medium produced by murine tumor cell lines engineered to constitutively express granulocyte-monocyte colony stimulating factor (GM-CSF). These ex vivo-generated MDSC subsets show high fidelity compared to their natural tumor-infiltrated counterparts. Moreover, the high yields of purification from these ex vivo differentiated MDSC enable their use for validation of new treatments in high-throughput assays. In this chapter we describe the engineering of a stable cell line overexpressing GM-CSF, followed by production and collection of conditioned media supporting MDSC differentiation. Finally, we detail the isolation procedure of bone marrow cells and the specific MDSC differentiation protocol.


Assuntos
Células Supressoras Mieloides , Animais , Camundongos , Células Supressoras Mieloides/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Diferenciação Celular , Linhagem Celular Tumoral
5.
Nature ; 628(8006): 195-203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480879

RESUMO

Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.


Assuntos
Complexo I de Transporte de Elétrons , Inflamação , Microglia , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Multiômica , Células Mieloides/metabolismo , Células Mieloides/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Espécies Reativas de Oxigênio/metabolismo
6.
Nat Commun ; 15(1): 2581, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519484

RESUMO

Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Feminino , Carcinoma Hepatocelular/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular , Células Mieloides/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Imunossupressores , Inflamação/patologia
7.
Biochem Pharmacol ; 222: 116100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428824

RESUMO

V-domain containing Ig Suppressor of T cell Activation (VISTA) is predominantly expressed on myeloid cells and functions as a ligand/receptor/soluble molecule. In inflammatory responses and immune responses, VISTA regulates multiple functions of myeloid cells, such as chemotaxis, phagocytosis, T cell activation. Since inflammation and immune responses are critical in many diseases, VISTA is a promising therapeutic target. In this review, we will describe the expression and function of VISTA on different myeloid cells, including neutrophils, monocytes, macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs). In addition, we will discuss whether the functions of VISTA on these cells impact the disease processing.


Assuntos
Antígenos B7 , Células Supressoras Mieloides , Humanos , Antígenos B7/genética , Células Mieloides/metabolismo , Macrófagos/metabolismo , Inflamação
8.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474011

RESUMO

Homeobox genes encode developmental transcription factors regulating tissue-specific differentiation processes and drive cancerogenesis when deregulated. Dendritic cells (DCs) are myeloid immune cells occurring as two types, either conventional or plasmacytoid DCs. Recently, we showed that the expression of NKL-subclass homeobox gene VENTX is restricted to conventional DCs, regulating developmental genes. Here, we identified and investigated homeobox genes specifically expressed in plasmacytoid DCs (pDCs) and derived blastic plasmacytoid dendritic cell neoplasm (BPDCN). We analyzed gene expression data, performed RQ-PCR, protein analyses by Western blot and immuno-cytology, siRNA-mediated knockdown assays and subsequent RNA-sequencing and live-cell imaging. Screening of public gene expression data revealed restricted activity of the CUT-class homeobox gene CUX2 in pDCs. An extended analysis of this homeobox gene class in myelopoiesis showed that additional CUX2 activity was restricted to myeloid progenitors, while BPDCN patients aberrantly expressed ONECUT2, which remained silent in the complete myeloid compartment. ONECUT2 expressing BPDCN cell line CAL-1 served as a model to investigate its regulation and oncogenic activity. The ONECUT2 locus at 18q21 was duplicated and activated by IRF4, AUTS2 and TNF-signaling and repressed by BMP4-, TGFb- and IL13-signalling. Functional analyses of ONECUT2 revealed the inhibition of pDC differentiation and of CDKN1C and CASP1 expression, while SMAD3 and EPAS1 were activated. EPAS1 in turn enhanced survival under hypoxic conditions which thus may support dendritic tumor cells residing in hypoxic skin lesions. Collectively, we revealed physiological and aberrant activities of CUT-class homeobox genes in myelopoiesis including pDCs and in BPDCN, respectively. Our data may aid in the diagnosis of BPDCN patients and reveal novel therapeutic targets for this fatal malignancy.


Assuntos
Genes Homeobox , Neoplasias Hematológicas , Humanos , Diferenciação Celular , Linhagem Celular , Células Mieloides/metabolismo , Células Dendríticas/metabolismo , Neoplasias Hematológicas/patologia , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética
9.
Arterioscler Thromb Vasc Biol ; 44(4): 883-897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328936

RESUMO

BACKGROUND: Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS: Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS: In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS: Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.


Assuntos
Receptores de Lisoesfingolipídeo , Migração Transendotelial e Transepitelial , Camundongos , Animais , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Esfingosina/metabolismo , Células Mieloides/metabolismo , Lisofosfolipídeos/metabolismo , Túnica Íntima/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
10.
Mod Pathol ; 37(4): 100450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369188

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and arginase-1 (ARG1) are amino acid-metabolizing enzymes, frequently highly expressed in cancer. Their expression may deplete essential amino acids, lead to immunosuppression, and promote cancer growth. Still, their expression patterns, prognostic significance, and spatial localization in the colorectal cancer microenvironment are incompletely understood. Using a custom 10-plex immunohistochemistry assay and supervised machine learning-based digital image analysis, we characterized IDO and ARG1 expression in monocytic cells, granulocytes, mast cells, and tumor cells in 833 colorectal cancer patients. We evaluated the prognostic value and spatial arrangement of IDO- and ARG1-expressing myeloid and tumor cells. IDO was mainly expressed not only by monocytic cells but also by some tumor cells, whereas ARG1 was predominantly expressed by granulocytes. Higher density of IDO+ monocytic cells was an independent prognostic factor for improved cancer-specific survival both in the tumor center (Ptrend = .0002; hazard ratio [HR] for the highest ordinal category Q4 [vs Q1], 0.51; 95% CI, 0.33-0.79) and the invasive margin (Ptrend = .0015). Higher density of granulocytes was associated with prolonged cancer-specific survival in univariable models, and higher FCGR3+ARG1+ neutrophil density in the tumor center also in multivariable analysis (Ptrend = .0020). Granulocytes were, on average, located closer to tumor cells than monocytic cells. Furthermore, IDO+ monocytic cells and ARG1- granulocytes were closer than IDO- monocytic cells and ARG1+ granulocytes, respectively. The mRNA expression of the IDO1 gene was assessed in myeloid and tumor cells using publicly available single-cell RNA sequencing data for 62 colorectal cancers. IDO1 was mainly expressed in monocytes and dendritic cells, and high IDO1 activity in monocytes was associated with enriched immunostimulatory pathways. Our findings provided in-depth information about the infiltration patterns and prognostic value of cells expressing IDO and/or ARG1 in the colorectal cancer microenvironment, highlighting the significance of host immune response in tumor progression.


Assuntos
Neoplasias Colorretais , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Arginase/metabolismo , Prognóstico , Células Mieloides/metabolismo , Neoplasias Colorretais/genética , Microambiente Tumoral
12.
J Neuroinflammation ; 21(1): 49, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355633

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) constitute a recently discovered bone-marrow-derived cell type useful for dealing with neuroinflammatory disorders. However, these cells are only formed during inflammatory conditions from immature myeloid cells (IMCs) that acquire immunosuppressive activity, thus being commonly gathered from diseased animals. Then, to obtain a more clinically feasible source, we characterized IMCs directly derived from healthy bone marrow and proved their potential immunosuppressive activity under pathological conditions in vitro. We then explored their neuroprotective potential in a model of human cerebellar ataxia, the Purkinje Cell Degeneration (PCD) mouse, as it displays a well-defined neurodegenerative and neuroinflammatory process that can be also aggravated by invasive surgeries. METHODS: IMCs were obtained from healthy bone marrow and co-cultured with activated T cells. The proliferation and apoptotic rate of the later were analyzed with Tag-it Violet. For in vivo studies, IMCs were transplanted by stereotactic surgery into the cerebellum of PCD mice. We also used sham-operated animals as controls of the surgical effects, as well as their untreated counterparts. Motor behavior of mice was assessed by rotarod test. The Purkinje cell density was measured by immunohistochemistry and cell death assessed with the TUNEL technique. We also analyzed the microglial phenotype by immunofluorescence and the expression pattern of inflammation-related genes by qPCR. Parametric tests were applied depending on the specific experiment: one or two way ANOVA and Student's T test. RESULTS: IMCs were proven to effectively acquire immunosuppressive activity under pathological conditions in vitro, thus acting as MDSCs. Concerning in vivo studios, sham-operated PCD mice suffered detrimental effects in motor coordination, Purkinje cell survival and microglial activation. After intracranial administration of IMCs into the cerebellum of PCD mice, no special benefits were detected in the transplanted animals when compared to untreated mice. Nonetheless, this transplant almost completely prevented the impairments caused by the surgery in PCD mice, probably by the modulation of the inflammatory patterns. CONCLUSIONS: Our work comprise two main translational findings: (1) IMCs can be directly used as they behave as MDSCs under pathological conditions, thus avoiding their gathering from diseased subjects; (2) IMCs are promising adjuvants when performing neurosurgery.


Assuntos
Cerebelo , Células Mieloides , Camundongos , Humanos , Animais , Células Mieloides/metabolismo , Células de Purkinje/patologia , Monócitos , Imunossupressores
13.
Biochem Biophys Res Commun ; 701: 149552, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335918

RESUMO

The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.


Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Dieta Ocidental , Aorta/metabolismo , Células Mieloides/metabolismo , Monócitos/metabolismo , Adesão Celular , Receptores de Interleucina/metabolismo
14.
Cell Death Differ ; 31(3): 265-279, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38383888

RESUMO

PirB is an inhibitory cell surface receptor particularly prominent on myeloid cells. PirB curtails the phenotypes of activated macrophages during inflammation or tumorigenesis, but its functions in macrophage homeostasis are obscure. To elucidate PirB-related functions in macrophages at steady-state, we generated and compared single-cell RNA-sequencing (scRNAseq) datasets obtained from myeloid cell subsets of wild type (WT) and PirB-deficient knockout (PirB KO) mice. To facilitate this analysis, we developed a novel approach to clustering parameter optimization called "Cluster Similarity Scoring and Distinction Index" (CaSSiDI). We demonstrate that CaSSiDI is an adaptable computational framework that facilitates tandem analysis of two scRNAseq datasets by optimizing clustering parameters. We further show that CaSSiDI offers more advantages than a standard Seurat analysis because it allows direct comparison of two or more independently clustered datasets, thereby alleviating the need for batch-correction while identifying the most similar and different clusters. Using CaSSiDI, we found that PirB is a novel regulator of Cebpb expression that controls the generation of Ly6Clo patrolling monocytes and the expansion properties of peritoneal macrophages. PirB's effect on Cebpb is tissue-specific since it was not observed in splenic red pulp macrophages (RPMs). However, CaSSiDI revealed a segregation of the WT RPM population into a CD68loIrf8+ "neuronal-primed" subset and an CD68hiFtl1+ "iron-loaded" subset. Our results establish the utility of CaSSiDI for single-cell assay analyses and the determination of optimal clustering parameters. Our application of CaSSiDI in this study has revealed previously unknown roles for PirB in myeloid cell populations. In particular, we have discovered homeostatic functions for PirB that are related to Cebpb expression in distinct macrophage subsets.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Macrófagos , Receptores Imunológicos , Análise de Célula Única , Animais , Camundongos , Macrófagos/metabolismo , Monócitos/metabolismo , Células Mieloides/metabolismo , Receptores de Superfície Celular , Receptores Imunológicos/metabolismo , Análise de Célula Única/métodos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
15.
Cell Metab ; 36(1): 1-3, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171329

RESUMO

Tumor-associated myeloid cells (TAMCs) are the predominant immune population in glioblastoma (GBM), but the definite role of TAMCs in GBM tumorigenicity remains uncertain. In this issue of Cell Metabolism, Rashidi et al. identify a specific population of TAMCs surrounding hypoxic regions of GBM. These TAMCs provide creatine to nearby tumor cells to promote GBM progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Creatina , Linhagem Celular Tumoral , Células Mieloides/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Microambiente Tumoral
16.
Nat Cancer ; 5(3): 500-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200243

RESUMO

Immunosuppressive myeloid cells hinder immunotherapeutic efficacy in tumors, but the precise mechanisms remain undefined. Here, by performing single-cell RNA sequencing in colorectal cancer tissues, we found tumor-associated macrophages and granulocytic myeloid-derived suppressor cells increased most compared to their counterparts in normal tissue and displayed the highest immune-inhibitory signatures among all immunocytes. These cells exhibited significantly increased expression of immunoreceptor tyrosine-based inhibitory motif-bearing receptors, including SIRPA. Notably, Sirpa-/- mice were more resistant to tumor progression than wild-type mice. Moreover, Sirpα deficiency reprogramed the tumor microenvironment through expansion of TAM_Ccl8hi and gMDSC_H2-Q10hi subsets showing strong antitumor activity. Sirpa-/- macrophages presented strong phagocytosis and antigen presentation to enhance T cell activation and proliferation. Furthermore, Sirpa-/- macrophages facilitated T cell recruitment via Syk/Btk-dependent Ccl8 secretion. Therefore, Sirpα deficiency enhances innate and adaptive immune activation independent of expression of CD47 and Sirpα blockade could be a promising strategy to improve cancer immunotherapy efficacy.


Assuntos
Antígeno CD47 , Neoplasias Colorretais , Camundongos , Animais , Antígeno CD47/genética , Antígeno CD47/metabolismo , Fagocitose , Macrófagos/metabolismo , Células Mieloides/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
17.
Cell Rep ; 43(1): 113661, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175754

RESUMO

Myeloid-derived suppressor cells (MDSCs) impair antitumor immune responses. Identifying regulatory circuits during MDSC development may bring new opportunities for therapeutic interventions. We report that the V-domain suppressor of T cell activation (VISTA) functions as a key enabler of MDSC differentiation. VISTA deficiency reduced STAT3 activation and STAT3-dependent production of polyamines, which causally impaired mitochondrial respiration and MDSC expansion. In both mixed bone marrow (BM) chimera mice and myeloid-specific VISTA conditional knockout mice, VISTA deficiency significantly reduced tumor-associated MDSCs but expanded monocyte-derived dendritic cells (DCs) and enhanced T cell-mediated tumor control. Correlated expression of VISTA and arginase-1 (ARG1), a key enzyme supporting polyamine biosynthesis, was observed in multiple human cancer types. In human endometrial cancer, co-expression of VISTA and ARG1 on tumor-associated myeloid cells is associated with poor survival. Taken together, these findings unveil the VISTA/polyamine axis as a central regulator of MDSC differentiation and warrant therapeutically targeting this axis for cancer immunotherapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Neoplasias/patologia , Poliaminas/metabolismo , Fator de Transcrição STAT3/metabolismo , Linfócitos T
18.
Nat Rev Clin Oncol ; 21(2): 147-164, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191922

RESUMO

Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Células Supressoras Mieloides/metabolismo , Neoplasias/patologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Imunoterapia , Linfócitos T , Microambiente Tumoral
19.
J Gastroenterol Hepatol ; 39(2): 369-380, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012119

RESUMO

BACKGROUND AND AIM: Triggering receptor expressed on myeloid cells 2 (TREM2) plays crucial roles in metabolic homeostasis and inflammatory response. Altered metabolic function in macrophages could modulate their activation and immune phenotype. The present study aimed to investigate the expression of TREM2 in non-alcoholic fatty liver disease (NAFLD) and to clarify the underlying mechanism of TREM2 on macrophages lipid metabolism and oxidative stress. METHODS: Hepatic TREM2 expression and its relationship with NAFLD progression were analyzed in patients with NAFLD and mice fed a high-fat diet. Lipid metabolism and oxidative stress were investigated in macrophages from NAFLD mice or stimulated with saturated fatty acids. Knockdown and overexpression of TREM2 were further explored. RESULTS: Triggering receptor expressed on myeloid cells 2+ macrophages were increased along with NAFLD development, characterized by aggravated steatosis and liver damage in humans and mice. TREM2 expression was upregulated and lipid metabolism was changed in macrophages from NAFLD mice or metabolically activated by saturated fatty acid in vitro, as demonstrated by increased lipid uptake and catabolism, but reduced de novo synthesis of fatty acids (FAs). Regulation of TREM2 expression in lipid-laden macrophages reprogrammed lipid metabolism, especially the fatty acid oxidation capacity of mitochondria. TREM2 knockdown promoted oxidative stress by aggravating FAs deposition in mitochondria. Intervention of mitochondrial FAs transport in lipid-laden macrophages alleviated FA deposition and reactive oxygen species production induced by TREM2 knockdown. CONCLUSIONS: Triggering receptor expressed on myeloid cells 2 expression was associated with the lipid metabolic profile and reactive oxygen species production in macrophages. High expression of TREM2 in macrophages may protect the liver from oxidative stress in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
J Thromb Haemost ; 22(2): 394-409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37865288

RESUMO

BACKGROUND: Myeloid cell metabolic reprogramming is a hallmark of inflammatory disease; however, its role in inflammation-induced hypercoagulability is poorly understood. OBJECTIVES: We aimed to evaluate the role of inflammation-associated metabolic reprogramming in regulating blood coagulation. METHODS: We used novel myeloid cell-based global hemostasis assays and murine models of immunometabolic disease. RESULTS: Glycolysis was essential for enhanced activated myeloid cell tissue factor expression and decryption, driving increased cell-dependent thrombin generation in response to inflammatory challenge. Similarly, inhibition of glycolysis enhanced activated macrophage fibrinolytic activity through reduced plasminogen activator inhibitor 1 activity. Macrophage polarization or activation markedly increased endothelial protein C receptor (EPCR) expression on monocytes and macrophages, leading to increased myeloid cell-dependent protein C activation. Importantly, inflammation-dependent EPCR expression on tissue-resident macrophages was also observed in vivo. Adipose tissue macrophages from obese mice fed a high-fat diet exhibited significantly enhanced EPCR expression and activated protein C generation compared with macrophages isolated from the adipose tissue of healthy mice. Similarly, the induction of colitis in mice prompted infiltration of EPCR+ innate myeloid cells within inflamed colonic tissue that were absent from the intestinal tissue of healthy mice. CONCLUSION: Collectively, this study identifies immunometabolic regulation of myeloid cell hypercoagulability, opening new therapeutic possibilities for targeted mitigation of thromboinflammatory disease.


Assuntos
Proteína C , Trombofilia , Animais , Camundongos , Proteína C/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células Mieloides/metabolismo , Inflamação/metabolismo , Trombofilia/etiologia , Glicólise , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...